Title

Identifying Behaviors in Crowd Scenes Using Stability Analysis for Dynamical Systems

Authors

Authors

B. Solmaz; B. E. Moore;M. Shah

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

IEEE Trans. Pattern Anal. Mach. Intell.

Keywords

Video scene analysis; dynamical systems; crowd behaviors; FLOW; TRACKING; FIELDS; Computer Science, Artificial Intelligence; Engineering, Electrical &; Electronic

Abstract

A method is proposed for identifying five crowd behaviors (bottlenecks, fountainheads, lanes, arches, and blocking) in visual scenes. In the algorithm, a scene is overlaid by a grid of particles initializing a dynamical system defined by the optical flow. Time integration of the dynamical system provides particle trajectories that represent the motion in the scene; these trajectories are used to locate regions of interest in the scene. Linear approximation of the dynamical system provides behavior classification through the Jacobian matrix; the eigenvalues determine the dynamic stability of points in the flow and each type of stability corresponds to one of the five crowd behaviors. The eigenvalues are only considered in the regions of interest, consistent with the linear approximation and the implicated behaviors. The algorithm is repeated over sequential clips of a video in order to record changes in eigenvalues, which may imply changes in behavior. The method was tested on over 60 crowd and traffic videos.

Journal Title

Ieee Transactions on Pattern Analysis and Machine Intelligence

Volume

34

Issue/Number

10

Publication Date

1-1-2012

Document Type

Article

Language

English

First Page

2064

Last Page

2070

WOS Identifier

WOS:000307522700016

ISSN

0162-8828

Share

COinS