Abbreviated Journal Title
Phys. Rev. B
Keywords
BASAL-PLANE; HYDROGENATION; GRAPHITE; Physics, Condensed Matter
Abstract
We have measured the impact of atomic hydrogen adsorption on the electronic transport properties of graphene sheets as a function of hydrogen coverage and initial, pre-hydrogenation field-effect mobility. Our results are compatible with hydrogen adsorbates inducing intervalley mixing by exerting a short-range scattering potential. The saturation coverages for different devices are found to be proportional to their initial mobility, indicating that the number of native scatterers is proportional to the saturation coverage of hydrogen. By extrapolating this proportionality, we show that the field-effect mobility can reach 1.5 x 10(4) cm(2)/V s in the absence of the hydrogen-adsorbing sites. This affinity to hydrogen is the signature of the most dominant type of native scatterers in graphene-based field-effect transistors on SiO2.
Journal Title
Physical Review B
Volume
82
Issue/Number
8
Publication Date
1-1-2010
Document Type
Article
Language
English
First Page
4
WOS Identifier
ISSN
1098-0121
Recommended Citation
Katoch, Jyoti; Chen, J. -H.; Tsuchikawa, Ryuichi; Smith, C. W.; Mucciolo, E. R.; and Ishigami, Masa, "Uncovering the dominant scatterer in graphene sheets on SiO2" (2010). Faculty Bibliography 2010s. 338.
https://stars.library.ucf.edu/facultybib2010/338
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu