Title
The inverse scattering transform and squared eigenfunctions for the nondegenerate 3 x 3 operator and its soliton structure
Abbreviated Journal Title
Inverse Probl.
Keywords
LINEAR 3-WAVE INTERACTIONS; SPACE-TIME EVOLUTION; RESONANT INTERACTION; NONLINEAR MEDIA; WAVE PACKETS; EQUATIONS; SYSTEM; OPTICS; Mathematics, Applied; Physics, Mathematical
Abstract
We develop a soliton perturbation theory for the non-degenerate 3x3 eigenvalue operator, with obvious applications to the three-wave resonant interaction. The key elements of an inverse scattering perturbation theory for integrable systems are the squared eigenfunctions and their adjoints. These functions serve as a mapping between variations in the potentials and variations in the scattering data. We also address the problem of the normalization of the Jost functions, how this affects the structure and solvability of the inverse scattering equations and the definition of the scattering data. We then explicitly provide the construction of the covering set of squared eigenfunctions and their adjoints, in terms of the Jost functions of the original eigenvalue problem. We also obtain, by a new and direct method (Yang and Kaup 2009 J. Math. Phys. 50 023504), the inner products and closure relations for these squared eigenfunctions and their adjoints. With this universal covering group, one would have tools to study the perturbations for any integrable system whose Lax pair contained the non-degenerate 3x3 eigenvalue operator, such as that found in the Lax pair of the integrable three-wave resonant interaction.
Journal Title
Inverse Problems
Volume
26
Issue/Number
5
Publication Date
1-1-2010
Document Type
Article
Language
English
First Page
34
WOS Identifier
ISSN
0266-5611
Recommended Citation
"The inverse scattering transform and squared eigenfunctions for the nondegenerate 3 x 3 operator and its soliton structure" (2010). Faculty Bibliography 2010s. 341.
https://stars.library.ucf.edu/facultybib2010/341
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu