Title
Traveling wave solutions of the n-dimensional coupled Yukawa equations
Abbreviated Journal Title
Appl. Math. Lett.
Keywords
Yukawa equations; Klein-Gordon-Schrodinger system; Meson-nucleon; interactions; Nonlinear dynamics; Traveling wave solutions; COMPETITIVE MODES; SYSTEM; LORENZ; Mathematics, Applied
Abstract
We discuss traveling wave solutions to the Yukawa equations, a system of nonlinear partial differential equations which has applications to meson-nucleon interactions. The Yukawa equations are converted to a six-dimensional dynamical system, which is then studied for various values of the wave speed and mass parameter. The stability of the solutions is discussed, and the methods of competitive modes is used to describe parameter regimes for which chaotic behaviors may appear. Numerical solutions are employed to better demonstrate the dependence of traveling wave solutions on the physical parameters in the Yukawa model. We find a variety of interesting behaviors in the system, a few of which we demonstrate graphically, which depend upon the relative strength of the mass parameter to the wave speed as well as the initial data. (C) 2011 Elsevier Ltd. All rights reserved.
Journal Title
Applied Mathematics Letters
Volume
25
Issue/Number
8
Publication Date
1-1-2012
Document Type
Article
Language
English
First Page
1106
Last Page
1110
WOS Identifier
ISSN
0893-9659
Recommended Citation
"Traveling wave solutions of the n-dimensional coupled Yukawa equations" (2012). Faculty Bibliography 2010s. 3423.
https://stars.library.ucf.edu/facultybib2010/3423
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu