Title
Control of error in the homotopy analysis of semi-linear elliptic boundary value problems
Abbreviated Journal Title
Numer. Algorithms
Keywords
Elliptic boundary value problem; Yamabe equation; Brinkman-Forchheimer; equation; Liouville's equation; Homotopy analysis method; Error analysis; and control; LANE-EMDEN EQUATION; NONLINEAR DIFFERENTIAL-EQUATIONS; VISCOUS-FLOW; PROBLEMS; NON-NEWTONIAN FLUIDS; ANALYTIC SOLUTION; SERIES SOLUTIONS; YAMABE-EQUATION; 2ND KIND; PERTURBATION SOLUTION; FORCED-CONVECTION; Mathematics, Applied
Abstract
In the present paper, we have considered three methods with which to control the error in the homotopy analysis of elliptic differential equations and related boundary value problems, namely, control of residual errors, minimization of error functionals, and optimal homotopy selection through appropriate choice of auxiliary function H(x). After outlining the methods in general, we consider three applications. First, we apply the method of minimized residual error in order to determine optimal values of the convergence control parameter to obtain solutions exhibiting central symmetry for the Yamabe equation in three or more spatial dimensions. Secondly, we apply the method of minimizing error functionals in order to obtain optimal values of the convergnce control parameter for the homotopy analysis solutions to the Brinkman-Forchheimer equation. Finally, we carefully selected the auxiliary function H(x) in order to obtain an optimal homotopy solution for Liouville's equation.
Journal Title
Numerical Algorithms
Volume
61
Issue/Number
4
Publication Date
1-1-2012
Document Type
Article
Language
English
First Page
613
Last Page
629
WOS Identifier
ISSN
1017-1398
Recommended Citation
"Control of error in the homotopy analysis of semi-linear elliptic boundary value problems" (2012). Faculty Bibliography 2010s. 3429.
https://stars.library.ucf.edu/facultybib2010/3429
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu