Title

Intravenous immunoglobulin protects neurons against amyloid beta-peptide toxicity and ischemic stroke by attenuating multiple cell death pathways

Authors

Authors

A. Widiapradja; V. Vegh; K. Z. Lok; S. Manzanero; J. Thundyil; M. Gelderblom; Y. L. Cheng; D. Pavlovski; S. C. Tang; D. G. Jo; T. Magnus; S. L. Chan; C. G. Sobey; D. Reutens; M. Basta; M. P. Mattson;T. V. Arumugam

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

J. Neurochem.

Keywords

A ss; Alzheimer's disease; apoptosis; IVIg; neurons; stroke; CEREBRAL-ARTERY OCCLUSION; ALZHEIMERS-DISEASE; BRAIN-INJURY; LIPID-PEROXIDATION; ANTIINFLAMMATORY ACTIVITY; INDUCED APOPTOSIS; KAPPA-B; MECHANISMS; EXPRESSION; MODEL; Biochemistry & Molecular Biology; Neurosciences

Abstract

J. Neurochem. (2012) 122, 321332. Abstract Intravenous immunoglobulin (IVIg) preparations obtained by fractionating blood plasma, are increasingly being used increasingly as an effective therapeutic agent in treatment of several inflammatory diseases. Its use as a potential therapeutic agent for treatment of stroke and Alzheimers disease has been proposed, but little is known about the neuroprotective mechanisms of IVIg. In this study, we investigated the effect of IVIg on downstream signaling pathways that are involved in neuronal cell death in experimental models of stroke and Alzheimers disease. Treatment of cultured neurons with IVIg reduced simulated ischemia- and amyloid beta peptide (A beta)-induced caspase 3 cleavage, and phosphorylation of the cell death-associated kinases p38MAPK, c-Jun NH2-terminal kinase and p65, in vitro. Additionally, A beta-induced accumulation of the lipid peroxidation product 4-hydroxynonenal was attenuated in neurons treated with IVIg. IVIg treatment also up-regulated the anti-apoptotic protein, Bcl2 in cortical neurons under ischemia-like conditions and exposure to A beta. Treatment of mice with IVIg reduced neuronal cell loss, apoptosis and infarct size, and improved functional outcome in a model of focal ischemic stroke. Together, these results indicate that IVIg acts directly on neurons to protect them against ischemic stroke and A beta-induced neuronal apoptosis by inhibiting cell death pathways and by elevating levels of the anti-apoptotic protein Bcl2.

Journal Title

Journal of Neurochemistry

Volume

122

Issue/Number

2

Publication Date

1-1-2012

Document Type

Article

Language

English

First Page

321

Last Page

332

WOS Identifier

WOS:000305897000010

ISSN

0022-3042

Share

COinS