Authors

F. Zhang; G. T. Yeh; J. C. Parker; H. B. Zhang; X. N. Shi; C. Wang;R. C. Gu

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

Terr. Atmos. Ocean. Sci.

Keywords

Sediment transport; Water quality models; Rivers/streams; Chemical; reactions; Chemical equilibrium/kinetics; Eutrophication; BIOGEOCHEMICAL PROCESSES; TRANSPORT; RIVER; SYSTEMS; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences; Oceanography

Abstract

This paper describes details of an automatic matrix decomposition approach for a reaction-based stream water quality model. The method yields a set of equilibrium equations, a set of kinetic-variable transport equations involving kinetic reactions only, and a set of component transport equations involving no reactions. Partial decomposition of the system of water quality constituent transport equations is performed via Gauss-Jordan column reduction of the reaction network by pivoting on equilibrium reactions to decouple equilibrium and kinetic reactions. This approach minimizes the number of partial differential advective-dispersive transport equations and enables robust numerical integration. Complete matrix decomposition by further pivoting on linearly independent kinetic reactions allows some rate equations to be formulated individually and explicitly enforces conservation of component species when component transport equations are solved. The methodology is demonstrated for a case study involving eutrophication reactions in the Des Moines River in Iowa, USA and for two hypothetical examples to illustrate the ability of the model to simulate sediment and chemical transport with both mobile and immobile water phases and with complex reaction networks involving both kinetic and equilibrium reactions.

Journal Title

Terrestrial Atmospheric and Oceanic Sciences

Volume

23

Issue/Number

5

Publication Date

1-1-2012

Document Type

Article

Language

English

First Page

605

Last Page

620

WOS Identifier

WOS:000310422000013

ISSN

1017-0839

Share

COinS