Authors

R. Adhikari;A. Bhattacharya

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

J. Chem. Phys.

Keywords

FORCED POLYMER TRANSLOCATION; SOLID-STATE NANOPORE; EXCLUDED-VOLUME; MONTE-CARLO; NARROW PORE; MODEL; FABRICATION; MOLECULES; EXPONENTS; BREAKDOWN; Physics, Atomic, Molecular & Chemical

Abstract

We study translocation dynamics of a semi-flexible polymer chain through a nanoscopic pore in two dimensions using Langevin dynamics simulation in presence of an external bias F inside the pore. For chain length N and stiffness parameter kappa(b) considered in this paper, we observe that the mean first passage time < tau > increases as < tau(kappa(b)) > similar to < tau(kappa(b) = 0) > l(p)(aN), where kappa(b) and l(p) are the stiffness parameter and persistence length, respectively, and a(N) is a constant that has a weak N dependence. We monitor the time dependence of the last monomer x(N)(t) at the cis compartment and calculate the tension propagation time (TP) t(tp) directly from simulation data for < x(N)(t) > similar to t as alluded in recent nonequlibrium TP theory [T. Sakaue, Phys. Rev. E 76, 021803 (2007)] and its modifications to Brownian dynamics tension propagation theory [T. Ikonen, A. Bhattacharya, T. Ala-Nissila, and W. Sung, Phys. Rev. E 85, 051803 (2012); J. Chem. Phys. 137, 085101 (2012)] originally developed to study translocation of a fully flexible chain. We also measure t(tp) from peak position of the waiting time distribution W(s) of the translocation coordinate s (i.e., the monomer inside the pore), and explicitly demonstrate the underlying TP picture along the chain backbone of a translocating chain to be valid for semi-flexible chains as well. From the simulation data, we determine the dependence of t(tp) on chain persistence length l(p) and show that the ratio t(tp)/< tau > is independent of the bias F.

Journal Title

Journal of Chemical Physics

Volume

138

Issue/Number

20

Publication Date

1-1-2013

Document Type

Article

Language

English

First Page

8

WOS Identifier

WOS:000320131100073

ISSN

0021-9606

Share

COinS