Title
Mechanics of hip dysplasia reductions in infants using the Pavlik harness: A physics-based computational model
Abbreviated Journal Title
J. Biomech.
Keywords
Pavlik harness; Hip dysplasia; Dynamical analysis; Passive reduction; Non-linear muscle model; CONGENITAL DISLOCATION; ULTRASOUND; Biophysics; Engineering, Biomedical
Abstract
Biomechanical factors influencing the reduction of dislocated hips with the Pavlik harness in patients of Developmental Dysplasia of the Hip (DDH) were studied using a three-dimensional computer model simulating hip reduction dynamics in (1) sublwcated and (2) fully dislocated hip joints. Five hip adductor muscles were identified as key mediators of DDH prognosis, and the non-dimensional force contribution of each in the direction necessary to achieve concentric hip reductions was determined. Results point to the adductor muscles as mediators of subluxated hip reductions, as their mechanical action is a function of the degree of hip dislocation. For subluxated hips in abduction and flexion, the Pectineus, Adductor Brevis, Adductor Longus, and proximal Adductor Magnus contribute positively to reduction, while the rest of the Adductor Magnus contributes negatively. In full dislocations all muscles contribute detrimentally to reduction, elucidating the need for traction to reduce Graf IV type dislocations. Reduction of dysplastic hips was found to occur in two distinct phases: (a) release phase and (b) reduction phase. cp (C) 2013 Elsevier Ltd. All rights reserved.
Journal Title
Journal of Biomechanics
Volume
46
Issue/Number
9
Publication Date
1-1-2013
Document Type
Article
Language
English
First Page
1501
Last Page
1507
WOS Identifier
ISSN
0021-9290
Recommended Citation
"Mechanics of hip dysplasia reductions in infants using the Pavlik harness: A physics-based computational model" (2013). Faculty Bibliography 2010s. 3627.
https://stars.library.ucf.edu/facultybib2010/3627
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu