Title
Towards the Understanding of Sintering Phenomena at the Nanoscale: Geometric and Environmental Effects
Abbreviated Journal Title
Top. Catal.
Keywords
Coarsening; Sintering; Ostwald-ripening; Diffusion-coalescence; Operando; Pt; Au; TiO2; SiO2; ZrO2; Al2O3; Micelle; Nanoparticle; Environment effect; Interparticle distance; Size effect; Thermal; stability; Encapsulation; Redispersion; SUPPORTED METAL-CATALYSTS; TRANSMISSION ELECTRON-MICROSCOPY; SCANNING-TUNNELING-MICROSCOPY; SULFURIC-ACID DECOMPOSITION; PARTICLE-SIZE DISTRIBUTIONS; TEMPERATURE-PROGRAMMED DESORPTION; IN-SITU; THERMAL-STABILITY; MODEL CATALYSTS; CO OXIDATION; Chemistry, Applied; Chemistry, Physical
Abstract
One of the technologically most important requirements for the application of supported metal nanoparticles (NPs) to the field of heterogeneous catalysis is the achievement of thermally and chemically stable systems under reaction conditions. For this purpose, a thorough understanding of the different pathways underlying coarsening phenomena is needed. In particular, in depth knowledge must be achieved on the role of the NP synthesis method, geometrical features of the NPs (size and shape), initial NP dispersion on the support (interparticle distance), support pre-treatment (affecting its morphology and chemical state), and reaction environment (gaseous or liquid medium, pressure, temperature). This study provides examples of the stability and sintering behavior of nanoscale systems monitored ex situ, in situ, and under operando conditions via transmission electron microscopy, atomic force microscopy, scanning tunneling microscopy, and X-ray absorption fine-structure spectroscopy. Experimental data corresponding to physical-vapor-deposited and micelle-synthesized metal (Pt, Au) NPs supported on TiO2, SiO2 and Al2O3 will be used to illustrate Ostwald-ripening and diffusion coalescence processes. In addition, the role of the annealing environment (H-2, O-2, water vapor) on the stability of NPs will be discussed.
Journal Title
Topics in Catalysis
Volume
56
Issue/Number
15-17
Publication Date
1-1-2013
Document Type
Article
Language
English
First Page
1542
Last Page
1559
WOS Identifier
ISSN
1022-5528
Recommended Citation
"Towards the Understanding of Sintering Phenomena at the Nanoscale: Geometric and Environmental Effects" (2013). Faculty Bibliography 2010s. 3683.
https://stars.library.ucf.edu/facultybib2010/3683
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu