Title
Mechanisms of Large Tensile Stiffness and High Fracture Strength of Bone
Abbreviated Journal Title
J. Comput. Theor. Nanosci.
Keywords
Bone; Bioceramic Composite; Hydroxyapatite Sheet Fibers; Tensile; Stiffness; Fracture Strength; HUMAN CORTICAL BONE; TOUGHNESS; CRACKS; Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials; Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter
Abstract
Scanning electron microscope (SEM) observation shows that a fibula bone is a kind of bioceramic composite consisting of hydroxyapatite crystal layers and mineral collagen-protein matters. The hydroxyapatite crystal layers are further composed of hydroxyapatite sheet fibers. It is also found that the hydroxyapatite sheet fibers have quite large volume fraction and very small cross section size in the bone. The thickness of the sheet fibers is within nanometer scale. The mechanisms of the large tensile stiffness and the high fracture strength of the bone are investigated based on the microstructural characteristics of the hydroxyapatite sheet fibers and the theories of the composite mechanics and fracture mechanics. The investigated results reveal that the large volume fraction and the small cross section size of the hydroxyapatite sheet fibers endow the bone with large tensile stiffness and high fracture strength.
Journal Title
Journal of Computational and Theoretical Nanoscience
Volume
10
Issue/Number
6
Publication Date
1-1-2013
Document Type
Article
Language
English
First Page
1425
Last Page
1428
WOS Identifier
ISSN
1546-1955
Recommended Citation
"Mechanisms of Large Tensile Stiffness and High Fracture Strength of Bone" (2013). Faculty Bibliography 2010s. 3781.
https://stars.library.ucf.edu/facultybib2010/3781
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu