Title
Residual Stress and Biaxial Strength in Sc2O3-CeO2-ZrO2/Y2O3-ZrO2 Layered Electrolytes
Abbreviated Journal Title
Fuel Cells
Keywords
Biaxial Strength; Mechanical Properties; Modeling; Solid Oxide Fuel; Cell; Thermal Residual Stress; OXIDE FUEL-CELLS; YTTRIA-STABILIZED ZIRCONIA; COMPOSITES; SOFCS; ZRO2; SC2O3; CEO2; Electrochemistry; Energy & Fuels
Abstract
Multi-layered (Y2O3)(0.08)(ZrO2)(0.92)/(Sc2O3)(0.1)(CeO2)(0.01)-(ZrO2)(0.89)(YSZ/SCSZ) electrolytes have been designed, so that the inner SCSZ layers provided superior ionic conductivity and the outer YSZ skin layers maintained good chemical and phase stability. Due to the mismatch of coefficients of thermal expansion between layers of different compositions, the thermal residual stresses were generated. The theoretical residual stress and strain were calculated for different thickness ratios of the electrolytes. In order to study the residual stress effect on the mechanical properties, the biaxial flexure tests of electrolytes with various layered designs were performed via a ring-on-ring method at room temperature and 800 degrees C. The maximum principal stress at the fracture indicated improved flexure strength in the electrolytes with layered designs at both temperatures. It is believed to be the result of the residual compressive stress in the outer YSZ layer. In addition, the Weibull statistics of the stress at the fracture at room temperature was studied, and the values of residual stress presented at the outer layer were well verified.
Journal Title
Fuel Cells
Volume
13
Issue/Number
6
Publication Date
1-1-2013
Document Type
Article
Language
English
First Page
1068
Last Page
1075
WOS Identifier
ISSN
1615-6846
Recommended Citation
"Residual Stress and Biaxial Strength in Sc2O3-CeO2-ZrO2/Y2O3-ZrO2 Layered Electrolytes" (2013). Faculty Bibliography 2010s. 3791.
https://stars.library.ucf.edu/facultybib2010/3791
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu