Title
A continuum hard-sphere model of protein adsorption
Abbreviated Journal Title
J. Comput. Phys.
Keywords
Protein adsorption; Biomaterials; Brownian dynamics; Computational fluid; dynamics; Continuum; Random sequential adsorption; PARTICLE DEPOSITION; MOLECULAR-DYNAMICS; SIMULATION; KINETICS; SURFACE; BIOMATERIALS; Computer Science, Interdisciplinary Applications; Physics, Mathematical
Abstract
Protein adsorption plays a significant role in biological phenomena such as cell-surface interactions and the coagulation of blood. Two-dimensional random sequential adsorption (RSA) models are widely used to model the adsorption of proteins on solid surfaces. Continuum equations have been developed so that the results of RSA simulations can be used to predict the kinetics of adsorption. Recently, Brownian dynamics simulations have become popular for modeling protein adsorption. In this work a continuum model was developed to allow the results from a Brownian dynamics simulation to be used as the boundary condition in a computational fluid dynamics (CFD) simulation. Brownian dynamics simulations were used to model the diffusive transport of hard-sphere particles in a liquid and the adsorption of the particles onto a solid surface. The configuration of the adsorbed particles was analyzed to quantify the chemical potential near the surface, which was found to be a function of the distance from the surface and the fractional surface coverage. The near-surface chemical potential was used to derive a continuum model of adsorption that incorporates the results from the Brownian dynamics simulations. The equations of the continuum model were discretized and coupled to a CFD simulation of diffusive transport to the surface. The kinetics of adsorption predicted by the continuum model closely matched the results from the Brownian dynamics simulation. This new model allows the results from mesoscale simulations to be incorporated into micro-or macro-scale CFD transport simulations of protein adsorption in practical devices. (C) 2012 Elsevier Inc. All rights reserved.
Journal Title
Journal of Computational Physics
Volume
244
Publication Date
1-1-2013
Document Type
Article
Language
English
First Page
212
Last Page
222
WOS Identifier
ISSN
0021-9991
Recommended Citation
"A continuum hard-sphere model of protein adsorption" (2013). Faculty Bibliography 2010s. 3974.
https://stars.library.ucf.edu/facultybib2010/3974
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu