Abbreviated Journal Title
Phys. Rev. B
Keywords
NONLINEAR-OPTICAL RESPONSE; QUANTUM-WELLS; 4-WAVE-MIXING SPECTROSCOPY; ENERGY-TRANSFER; GAAS; EXCITATION; SEMICONDUCTORS; LOCALIZATION; INTERFACES; MECHANICS; Physics, Condensed Matter
Abstract
Monolayer fluctuations in the thickness of a semiconductor quantum well (QW) lead to the formation of spectrally resolved excitons located in the narrower, average, and thicker regions of the QW. Whether or not these excitons are coherently coupled via Coulomb interaction is a long-standing debate. We demonstrate that different types of disorder potential govern coherent coupling among excitons, and the coupling strength can be quantitatively measured using optical two-dimensional Fourier transform spectroscopy. Strong coherent coupling occurs between certain types of excitons but is missing between other types of excitons because the distinctive nature of excitons results in different spatial overlap. Our finding may be applicable to other disordered systems, such as photosynthesis and conjugated polymers, where exciton coupling plays a critical role in determining charge and energy transfer.
Journal Title
Physical Review B
Volume
88
Issue/Number
7
Publication Date
1-1-2013
Document Type
Article
Language
English
First Page
7
WOS Identifier
ISSN
1098-0121
Recommended Citation
Glinka, Yuri D.; Sun, Zheng; Erementchouk, Mikhail; Leuenberger, Michael N.; Bristow, Alan D.; Cundiff, Steven T.; Bracker, Allan S.; and Li, Xiaoqin, "Coherent coupling between exciton resonances governed by the disorder potential" (2013). Faculty Bibliography 2010s. 4034.
https://stars.library.ucf.edu/facultybib2010/4034
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu