Title
Two-photon absorption spectra of a near-infrared 2-azaazulene polymethine dye: solvation and ground-state symmetry breaking
Abbreviated Journal Title
Phys. Chem. Chem. Phys.
Keywords
STRUCTURE-PROPERTY RELATIONSHIPS; OPTICAL-SPECTRA; ELECTRONIC-TRANSITIONS; VIBRONIC CONTRIBUTIONS; NONLINEAR REFRACTION; NLO RESPONSES; CHROMOPHORES; MOLECULES; SOLVATOCHROMISM; POLYMERS; Chemistry, Physical; Physics, Atomic, Molecular & Chemical
Abstract
Polymethine dyes (PDs) with absorption bands in the near-infrared region undergo symmetry breaking in polar solvents. To investigate how symmetry breaking affects nonlinear optical responses of PDs, an extensive and challenging experimental characterization of a cationic 2-azaazulene polymethine dye, including linear absorption, fluorescence, two-photon absorption and excited-state absorption, has been performed in two solvents with different polarity. Based on this extensive set of experimental data, a three-electronic-state model, accounting for the coupling of electronic degrees of freedom to molecular vibrations and polar solvation, has been reliably parameterized and validated for this dye, fully rationalizing optical spectra in terms of spectral position, intensities and bandshapes. In low-polarity solvents where the dye is mainly in its symmetric form, a nominally forbidden two-photon absorption band is observed, due to a vibronic activation mechanism. Inhomogeneous broadening plays a major role in polar solvents: absorption spectra represent the weighted sum of contributions from states with a variable amount of symmetry breaking, leading to a complex evolution of linear and nonlinear optical spectra with solvent polarity. In more polar solvents, the dominant role of the asymmetric form leads to the activation of two-photon absorption as a result of the symmetry lowering. The subtle interplay between the two mechanisms for two-photon absorption activation, vibronic coupling and polar solvation, can be fully accounted for within the proposed microscopic model allowing a detailed interpretation of the optical spectra of PDs.
Journal Title
Physical Chemistry Chemical Physics
Volume
15
Issue/Number
20
Publication Date
1-1-2013
Document Type
Article
DOI Link
Language
English
First Page
7666
Last Page
7678
WOS Identifier
ISSN
1463-9076
Recommended Citation
"Two-photon absorption spectra of a near-infrared 2-azaazulene polymethine dye: solvation and ground-state symmetry breaking" (2013). Faculty Bibliography 2010s. 4116.
https://stars.library.ucf.edu/facultybib2010/4116
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu