Title
Influence of hot rolling on the deformation behavior of particle reinforced aluminum metal matrix composite
Abbreviated Journal Title
Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process.
Keywords
Composites; Thermomechanical processing; Finite element method; Micromechanics; IMAGE CORRELATION PHOTOGRAMMETRY; FIELD DYNAMIC DISPLACEMENT; A359; ALUMINUM; MECHANICAL-PROPERTIES; PLASTIC-DEFORMATION; DAMAGE; STRAIN; FRACTURE; FAILURE; ALLOY; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering
Abstract
This paper presents the development of a microstructure based finite element model to predict the effective mechanical response and study the failure mechanisms of a particulate metal matrix composite (MMC) which explicitly accounts for changes in microstructure due to thermo-mechanical processing from the as-cast to rolled states. Experimental testing including macro-scale tension, in-situ SEM microscale tension, and nano-indentation were used to characterize the deformation behavior and active failure mechanisms. It was found that the damage mechanism transitions from being dominated by void nucleation and growth in the matrix in the as-cast state to interfacial decohesion and particle fracture in the rolled material. The numerical model is used to quantify the contribution of interfacial decohesion and particle fracture damage mechanisms to the local and global continuum response of a hot rolled A359/pSiC MMC.
Journal Title
Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing
Volume
577
Publication Date
1-1-2013
Document Type
Article
Language
English
First Page
54
Last Page
63
WOS Identifier
ISSN
0921-5093
Recommended Citation
McWilliams, B.; Sano, T.; Yu, J.; Gordon, A.; and Yen, C., "Influence of hot rolling on the deformation behavior of particle reinforced aluminum metal matrix composite" (2013). Faculty Bibliography 2010s. 4397.
https://stars.library.ucf.edu/facultybib2010/4397
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu