Title
The chemical behavior and degradation mitigation effect of cerium oxide nanoparticles in perfluorosulfonic acid polymer electrolyte membranes
Abbreviated Journal Title
Polym. Degrad. Stabil.
Keywords
Cerium oxide; Perfluorosulfonic acid; Polymer electrolyte membrane; (PEM); Fuel cell; Fenton test; Degradation mitigation; PROTON-EXCHANGE MEMBRANE; FUEL-CELLS; RADICALS; Polymer Science
Abstract
Perfluorosulfonic acid membranes are susceptible to degradation during hydrogen fuel cell operation due to radical attack on the polymer chains. Mitigation of this attack by cerium-based radical scavengers is an approach that has shown promise. In this work, two formulations of crystalline cerium oxide nanoparticles, with an order of magnitude difference in particle size, are incorporated into said membranes and subjected to proton conductivity measurements and ex-situ durability tests. We found that ceria is reduced to Ce(III) ions in the acidic environment of a heated, humidified membrane which negatively impacts proton conductivity. In liquid and gas Fenton testing, fluoride emission is reduced by an order of magnitude, drastically increasing membrane longevity. Sideproduct analysis demonstrated that in the liquid Fenton test, the main point of attack is weak polymer end groups, while in the gas Fenton test, there is additional side-chain attack. Both mechanisms are mitigated by the addition of the ceria nanoparticles, whereby the extent of the concentration-dependent durability improvement is found to be independent of particle size. (C) 2013 Elsevier Ltd. All rights reserved.
Journal Title
Polymer Degradation and Stability
Volume
98
Issue/Number
9
Publication Date
1-1-2013
Document Type
Article
Language
English
First Page
1766
Last Page
1772
WOS Identifier
ISSN
0141-3910
Recommended Citation
"The chemical behavior and degradation mitigation effect of cerium oxide nanoparticles in perfluorosulfonic acid polymer electrolyte membranes" (2013). Faculty Bibliography 2010s. 4518.
https://stars.library.ucf.edu/facultybib2010/4518
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu