Title

Painleve property and exact solutions for a nonlinear wave equation with generalized power-law nonlinearities

Authors

Authors

M. Russo; R. A. Van Gorder;S. R. Choudhury

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

Commun. Nonlinear Sci. Numer. Simul.

Keywords

Painleve analysis; Nonlinear hyperbolic PDE; Power-law nonlinearity; Exact solutions; PARTIAL-DIFFERENTIAL-EQUATIONS; SOLITON-SOLUTIONS; Mathematics, Applied; Mathematics, Interdisciplinary Applications; Mechanics; Physics, Fluids & Plasmas; Physics, Mathematical

Abstract

By employing a variety of techniques, we investigate several classes of solutions of a family of nonlinear partial differential equations (NLPDEs) with generalized nonlinearities, special cases of which include the Klein-Gordon equation, the Landau-Ginzburg-Higgs equation, the phi(4) and phi(6) equations, the Rayleigh wave equation. The Painleve property for our class of equations is studied first, showing that there are integrable families of such equations satisfying the strong Painleve property (under a traveling wave assumption). From the truncated Laurent expansions, we introduce the auto-Backlund transformation for the two families shown to admit the strong Painleve property. A multi-parameter family of exact solutions is then constructed from these auto-Backlund transformations for each of the cases, leading to travelling wave solutions. From here, assuming only travelling wave solutions, we then discuss more general methods of obtaining travelling wave solutions for those cases which do not satisfy the strong Painleve property. Such solutions constitute rare exact solutions to a complicated nonlinear partial differential equation. (c) 2012 Elsevier B.V. All rights reserved.

Journal Title

Communications in Nonlinear Science and Numerical Simulation

Volume

18

Issue/Number

7

Publication Date

1-1-2013

Document Type

Article

Language

English

First Page

1623

Last Page

1634

WOS Identifier

WOS:000314870400007

ISSN

1007-5704

Share

COinS