Abbreviated Journal Title
Phys. Rev. B
Keywords
BILAYER GRAPHENE; 2 DIMENSIONS; SCATTERING; SIMULATION; RESOLUTION; COPPER; LAYER; Physics, Condensed Matter
Abstract
Graphene's structure bears on both the material's electronic properties and fundamental questions about long-range order in two-dimensional crystals. We present an analytic calculation of selected area electron diffraction from multilayer graphene and compare it with data from samples prepared by chemical vapor deposition and mechanical exfoliation. A single layer scatters only 0.5% of the incident electrons, so this kinematical calculation can be considered reliable for five or fewer layers. Dark-field transmission electron micrographs of multilayer graphene illustrate how knowledge of the diffraction peak intensities can be applied for rapid mapping of thickness, stacking, and grain boundaries. The diffraction peak intensities also depend on the mean-square displacement of atoms from their ideal lattice locations, which is parameterized by a Debye-Waller factor. We measure the Debye-Waller factor of a suspended monolayer of exfoliated graphene and find a result consistent with an estimate based on the Debye model. For laboratory-scale graphene samples, finite size effects are sufficient to stabilize the graphene lattice against melting, indicating that ripples in the third dimension are not necessary.
Journal Title
Physical Review B
Volume
87
Issue/Number
4
Publication Date
1-1-2013
Document Type
Article
Language
English
First Page
9
WOS Identifier
ISSN
1098-0121
Recommended Citation
Shevitski, Brian; Mecklenburg, Matthew; Hubbard, Willaim A.; White, E. R.; Dawson, Ben; Lodge, M. S.; Ishigami, Masa; and Regan, B. C., "Dark-field transmission electron microscopy and the Debye-Waller factor of graphene" (2013). Faculty Bibliography 2010s. 4690.
https://stars.library.ucf.edu/facultybib2010/4690
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu