Title
Microfabricated mammalian organ systems and their integration into models of whole animals and humans
Abbreviated Journal Title
Lab Chip
Keywords
BLOOD-BRAIN-BARRIER; CELL-CULTURE ANALOG; FLUORESCENCE; OPTICAL-DETECTION; DRUG-SCREENING PLATFORM; TOTAL BIOASSAY SYSTEM; SERUM-FREE MEDIUM; IN-VITRO TISSUE; SKELETAL-MUSCLE; DEFINED SYSTEM; MICROELECTRODE ARRAYS; Biochemical Research Methods; Chemistry, Multidisciplinary; Nanoscience; & Nanotechnology
Abstract
While in vitro cell based systems have been an invaluable tool in biology, they often suffer from a lack of physiological relevance. The discrepancy between the in vitro and in vivo systems has been a bottleneck in drug development process and biological sciences. The recent progress in microtechnology has enabled manipulation of cellular environment at a physiologically relevant length scale, which has led to the development of novel in vitro organ systems, often termed 'organ-on-a-chip' systems. By mimicking the cellular environment of in vivo tissues, various organ-on-a-chip systems have been reported to reproduce target organ functions better than conventional in vitro model systems. Ultimately, these organ-on-a-chip systems will converge into multi-organ 'body-on-a-chip' systems composed of functional tissues that reproduce the dynamics of the whole-body response. Such microscale in vitro systems will open up new possibilities in medical science and in the pharmaceutical industry.
Journal Title
Lab on a Chip
Volume
13
Issue/Number
7
Publication Date
1-1-2013
Document Type
Review
DOI Link
Language
English
First Page
1201
Last Page
1212
WOS Identifier
ISSN
1473-0197
Recommended Citation
"Microfabricated mammalian organ systems and their integration into models of whole animals and humans" (2013). Faculty Bibliography 2010s. 4727.
https://stars.library.ucf.edu/facultybib2010/4727
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu