Authors

J. Yan; S. T. Wu; K. L. Cheng;J. W. Shiu

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

"This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in the linked citation and may be found originally at Applied Physics Letters."

Abbreviated Journal Title

Appl. Phys. Lett.

Keywords

Physics, Applied

Abstract

We demonstrate a full-color-capability reflective display using red, green, and blue sub-pixels of polymer-stabilized blue phase liquid crystal (BPLC) with different pitch lengths. Vivid colors originate from three-dimensional BPLC photonic crystalline structure. Surface alignment plays a key role to generate uniform and saturated colors in the voltage-off state. Analogous grayscale is achieved by the electric-field-induced unwinding of double-twist structure. This working principle is drastically different from the phase retardation effect of conventional liquid crystal displays. Moreover, the submillisecond response time enables crisp video displays without image blurring. Potential applications for reflective 3D display are also analyzed.

Journal Title

Applied Physics Letters

Volume

102

Issue/Number

8

Publication Date

1-1-2013

Document Type

Article

Language

English

First Page

5

WOS Identifier

WOS:000315597000002

ISSN

0003-6951

Share

COinS