Title
View invariant action recognition using projective depth
Abbreviated Journal Title
Comput. Vis. Image Underst.
Keywords
View invariance; Action recognition; Projective depth; SPACE; REPRESENTATION; MACHINE; FLOW; Computer Science, Artificial Intelligence; Engineering, Electrical &; Electronic
Abstract
In this paper, we investigate the concept of projective depth, demonstrate its application and significance in view-invariant action recognition. We show that projective depths are invariant to camera internal parameters and orientation, and hence can be used to identify similar motion of body-points from varying viewpoints. By representing the human body as a set of points, we decompose a body posture into a set of projective depths. The similarity between two actions is, therefore, measured by the motion of projective depths. We exhaustively investigate the different ways of extracting planes, which can be used to estimate the projective depths for use in action recognition including (i) ground plane, (ii) body-point triplets, (iii) planes in time, and (iv) planes extracted from mirror symmetry. We analyze these different techniques and analyze their efficacy in view-invariant action recognition. Experiments are performed on three categories of data including the CMU MoCap dataset, Kinect dataset, and IXMAS dataset. Results evaluated over semi-synthetic video data and real data confirm that our method can recognize actions, even when they have dynamic timeline maps, and the viewpoints and camera parameters are unknown and totally different. (C) 2014 Elsevier Inc. All rights reserved.
Journal Title
Computer Vision and Image Understanding
Volume
123
Publication Date
1-1-2014
Document Type
Article
Language
English
First Page
41
Last Page
52
WOS Identifier
ISSN
1077-3142
Recommended Citation
"View invariant action recognition using projective depth" (2014). Faculty Bibliography 2010s. 5001.
https://stars.library.ucf.edu/facultybib2010/5001
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu