Abbreviated Journal Title
Phys. Rev. E
Keywords
INVARIANT; DIFFUSION; TRANSPORT; EVOLUTION; CAPTURE; Physics, Fluids & Plasmas; Physics, Mathematical
Abstract
Trapping phenomena involving nonlinear resonances have been considered in the past in the framework of adiabatic theory. Several results are known for continuous-time dynamical systems generated by Hamiltonian flows in which the combined effect of nonlinear resonances and slow time variation of some system parameters is considered. The focus of this paper is on discrete-time dynamical systems generated by two-dimensional symplectic maps. The possibility of extending the results of neo-adiabatic theory to quasi-integrable area-preserving maps is discussed. Scaling laws are derived, which describe the adiabatic transport as a function of the system parameters using a probabilistic point of view. These laws can be particularly relevant for physical applications. The outcome of extensive numerical simulations showing the excellent agreement with the analytical estimates and scaling laws is presented and discussed in detail.
Journal Title
Physical Review E
Volume
89
Issue/Number
4
Publication Date
1-1-2014
Document Type
Article
Language
English
First Page
14
WOS Identifier
ISSN
1539-3755
Recommended Citation
Bazzani, Armando; Frye, Christopher; Giovannozzi, Massimo; and Hernalsteens, Cédric, "Analysis of adiabatic trapping for quasi-integrable area-preserving maps" (2014). Faculty Bibliography 2010s. 5045.
https://stars.library.ucf.edu/facultybib2010/5045
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu