Title
Cubic ZnxMg1-xO thin films grown by plasma-assisted molecular-beam epitaxy for optoelectronic applications
Abbreviated Journal Title
J. Mater. Res.
Keywords
PULSED-LASER DEPOSITION; REFRACTIVE-INDEXES; ALLOY-FILMS; BAND-GAP; ELECTRICAL-PROPERTIES; MG(X)ZN1-XO ALLOYS; OPTICAL-PROPERTIES; MGXZN1-XO; FILMS; PLANE SAPPHIRE; BUFFER LAYER; Materials Science, Multidisciplinary
Abstract
Heteroepitaxial ZnxMg1-xO thin films were grown on lattice-matched MgO (100) substrates using radiofrequency plasma-assisted molecular-beam epitaxy. High-quality epilayers with zinc concentrations ranging from x = 0 (MgO) to x = 0.65 were grown and characterized optically, structurally, and electrically. The ZnxMg1-xO films were found to maintain the rocksalt cubic (B1) crystal structure for concentrations z < 0.65, with a linear dependence of lattice constant on Zn concentration. X-ray diffraction (XRD) also revealed the emergence of phase segregation into wurtzite (B4) phase for the highest concentration film. The band gap energy of the films was successfully varied from 4.9 to 6.2 eV (253-200 nm), showing a linear relationship with Zn concentration. The strictly cubic films exhibit roughness on the order of 10 angstrom and resistivities of approximately 10(6) Omega.cm.
Journal Title
Journal of Materials Research
Volume
25
Issue/Number
6
Publication Date
1-1-2010
Document Type
Article
Language
English
First Page
1072
Last Page
1079
WOS Identifier
ISSN
0884-2914
Recommended Citation
"Cubic ZnxMg1-xO thin films grown by plasma-assisted molecular-beam epitaxy for optoelectronic applications" (2010). Faculty Bibliography 2010s. 506.
https://stars.library.ucf.edu/facultybib2010/506
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu