Title
Quantitative study on structural evolutions and associated energetics in polysilazane-derived amorphous silicon carbonitride ceramics
Abbreviated Journal Title
Acta Mater.
Keywords
Polymer-derived ceramics; Structure evolution; Thermodynamics; Energetics; Nanodomain; SICN CERAMICS; HIGH-TEMPERATURE; SIALCN CERAMICS; SILICOALUMINUM; CARBONITRIDE; ELECTRONIC-PROPERTIES; WATER-VAPOR; THIN-FILMS; X-RAY; C-N; SPECTROSCOPY; Materials Science, Multidisciplinary; Metallurgy & Metallurgical; Engineering
Abstract
Several important structural changes and their energetics during high-temperature annealing of polysilazane-derived amorphous silicon carbonitride ceramics were quantitatively studied. A Si-29 solid-state NMR study indicated that the structural transition in the Si-containing area can be described by an equilibrium reaction, 4SiCN(3) = SiC4 + 3SiN(4). The enthalpy and entropy for the reaction were calculated to be positive. Raman and electron paramagnetic resonance (EPR) studies revealed that the structural evolution within the free carbon area includes the graphitization of amorphous carbon and the lateral growth of nanographite, accompanied by a decrease in the point defect concentration. EPR results also suggested that the materials contain two kinds of point defects: carbon-dangling bonds at the edge and in the interior of the nanographite. It was found that the lateral growth of the nanographite followed a 2-D grain growth process, and that the decrease in the defect concentration was mainly due to the growth of the nanographite. The energetics of the structural changes was rationalized according to a simple structural model, and the effects of these changes on the stability of the materials were discussed. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Journal Title
Acta Materialia
Volume
72
Publication Date
1-1-2014
Document Type
Article
Language
English
First Page
22
Last Page
31
WOS Identifier
ISSN
1359-6454
Recommended Citation
"Quantitative study on structural evolutions and associated energetics in polysilazane-derived amorphous silicon carbonitride ceramics" (2014). Faculty Bibliography 2010s. 5173.
https://stars.library.ucf.edu/facultybib2010/5173
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu