Title

Universal monomer dynamics of a two-dimensional semi-flexible chain

Authors

Authors

A. Q. Huang; R. Adhikari; A. Bhattacharya;K. Binder

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

Epl

Keywords

PERSISTENCE LENGTH; MONTE-CARLO; POLYMERS; MACROMOLECULES; SIMULATION; STIFFNESS; DILUTE; MODEL; DNA; Physics, Multidisciplinary

Abstract

We present a unified scaling theory for the dynamics of monomers for dilute solutions of semi-flexible polymers under good solvent conditions in the free draining limit. Our theory encompasses the well-known regimes of mean square displacements (MSDs) of stiff chains growing like t(3/4) with time due to bending motions, and the Rouse-like regime t(2 nu/(1+2 nu)) where nu is the Flory exponent describing the radius R of a swollen flexible coil. We identify how the prefactors of these laws scale with the persistence length l(p), and show that a crossover from stiff to flexible behavior occurs at a MSD of order l(p)(2) (at a time proportional to l(p)(3)). A second crossover (to diffusive motion) occurs when the MSD is of order R-2. Large-scale molecular-dynamics simulations of a bead-spring model with a bond bending potential (allowing to vary l(p) from 1 to 200 LennardJones units) provide compelling evidence for the theory, in D = 2 dimensions where nu = 3/4. Our results should be valuable for understanding the dynamics of DNA (and other semi-flexible biopolymers) adsorbed on substrates. Copyright (C) EPLA, 2014

Journal Title

Epl

Volume

105

Issue/Number

1

Publication Date

1-1-2014

Document Type

Article

Language

English

First Page

6

WOS Identifier

WOS:000331197100024

ISSN

0295-5075

Share

COinS