Title

Tuning the electrical property via defect engineering of single layer MoS2 by oxygen plasma

Authors

Authors

M. R. Islam; N. Kang; U. Bhanu; H. P. Paudel; M. Erementchouk; L. Tetard; M. N. Leuenberger;S. I. Khondaker

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

Nanoscale

Keywords

TRANSITION-METAL DICHALCOGENIDES; ATOMICALLY THIN MOS2; ELECTRONIC-STRUCTURE; INTEGRATED-CIRCUITS; GRAPHENE OXIDE; TRANSISTORS; RAMAN; HETEROSTRUCTURES; NANOSHEETS; EVOLUTION; Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials; Science, Multidisciplinary; Physics, Applied

Abstract

We have demonstrated that the electrical property of single-layer molybdenum disulfide (MoS2) can be significantly tuned from the semiconducting to the insulating regime via controlled exposure to oxygen plasma. The mobility, on-current and resistance of single-layer MoS2 devices were varied by up to four orders of magnitude by controlling the plasma exposure time. Raman spectroscopy, X-ray photoelectron spectroscopy and density functional theory studies suggest that the significant variation of electronic properties is caused by the creation of insulating MoO3-rich disordered domains in the MoS2 sheet upon oxygen plasma exposure, leading to an exponential variation of resistance and mobility as a function of plasma exposure time. The resistance variation calculated using an effective medium model is in excellent agreement with the measurements. The simple approach described here can be used for the fabrication of tunable two-dimensional nanodevices based on MoS2 and other transition metal dichalcogenides.

Journal Title

Nanoscale

Volume

6

Issue/Number

17

Publication Date

1-1-2014

Document Type

Article

Language

English

First Page

10033

Last Page

10039

WOS Identifier

WOS:000340520500019

ISSN

2040-3364

Share

COinS