Title
Dynamic State Estimation of a Synchronous Machine Using PMU Data: A Comparative Study
Abbreviated Journal Title
J. Appl. Phys.
Keywords
Ensemble Kalman filter (EnKF); extended Kalman filter (EKF); particle; filter (PF); phasor measurement unit (PMU); power system dynamics; state; estimation; unscented Kalman filter (UKF); POWER-SYSTEM; Engineering, Electrical & Electronic
Abstract
Accurate information about dynamic states is important for efficient control and operation of a power system. This paper compares the performance of four Bayesian-based filtering approaches in estimating dynamic states of a synchronous machine using phasor measurement unit data. The four methods are extended Kalman filter, unscented Kalman filter, ensemble Kalman filter, and particle filter. The statistical performance of each algorithm is compared using Monte Carlo methods and a two-area-four-machine test system. Under the statistical framework, robustness against measurement noise and process noise, sensitivity to sampling interval, and computation time are evaluated and compared for each approach. Based on the comparison, this paper makes some recommendations for the proper use of the methods.
Subjects
N. Zhou; D. Meng; Z. Y. Huang;G. Welch
Volume
6
Issue/Number
1
Publication Date
1-1-2014
Document Type
Article
Language
English
First Page
450
Last Page
460
WOS Identifier
ISSN
1949-3053
Recommended Citation
"Dynamic State Estimation of a Synchronous Machine Using PMU Data: A Comparative Study" (2014). Faculty Bibliography 2010s. 5676.
https://stars.library.ucf.edu/facultybib2010/5676
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu