Title

Dynamic State Estimation of a Synchronous Machine Using PMU Data: A Comparative Study

Authors

Authors

IEEE Trans. Smart Grid

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

J. Appl. Phys.

Keywords

Ensemble Kalman filter (EnKF); extended Kalman filter (EKF); particle; filter (PF); phasor measurement unit (PMU); power system dynamics; state; estimation; unscented Kalman filter (UKF); POWER-SYSTEM; Engineering, Electrical & Electronic

Abstract

Accurate information about dynamic states is important for efficient control and operation of a power system. This paper compares the performance of four Bayesian-based filtering approaches in estimating dynamic states of a synchronous machine using phasor measurement unit data. The four methods are extended Kalman filter, unscented Kalman filter, ensemble Kalman filter, and particle filter. The statistical performance of each algorithm is compared using Monte Carlo methods and a two-area-four-machine test system. Under the statistical framework, robustness against measurement noise and process noise, sensitivity to sampling interval, and computation time are evaluated and compared for each approach. Based on the comparison, this paper makes some recommendations for the proper use of the methods.

Subjects

N. Zhou; D. Meng; Z. Y. Huang;G. Welch

Volume

6

Issue/Number

1

Publication Date

1-1-2014

Document Type

Article

Language

English

First Page

450

Last Page

460

WOS Identifier

WOS:000346731400045

ISSN

1949-3053

Share

COinS