Title
Evaluation of Ductile Fracture Models in Finite Element Simulation of Metal Cutting Processes
Abbreviated Journal Title
J. Manuf. Sci. Eng.-Trans. ASME
Keywords
finite element modeling; ductile fracture models; machining processes; simulation; Johnson-Cook (J-C) model; chip formation; CHIP FORMATION; SEPARATION CRITERIA; FEM SIMULATION; STRAIN RATES; MECHANICS; FLOW; TEMPERATURES; TRIAXIALITY; PERFORATION; WEAR; Engineering, Manufacturing; Engineering, Mechanical
Abstract
In this paper, a systematic evaluation of six ductile fracture models is conducted to identify the most suitable fracture criterion for metal cutting processes. Six fracture models are evaluated in this study, including constant fracture strain, Johnson-Cook, Johnson-Cook coupling criterion, Wilkins, modified Cockcroft-Latham, and Bao-Wierzbicki fracture criterion. By means of ABAQUS built-in commands and a user material subroutine (VUMAT), these fracture models are implemented into a finite element (FE) model of orthogonal cutting processes in ABAQUS/Explicit platform. The local parameters (stress, strain, fracture factor, and velocity fields) and global variables (chip morphology, cutting forces, temperature, shear angle, and machined surface integrity) are evaluated. The numerical simulation results are examined by comparing to experimental results of 2024-T3 aluminum alloy published in the open literature. Based on the results, it is found that damage evolution should be considered in cutting process FE simulation. Moreover, the B-W fracture model with consideration of rate dependency, temperature effect and damage evolution gives the best prediction of chip removal behavior of ductile metals.
Journal Title
Journal of Manufacturing Science and Engineering-Transactions of the Asme
Volume
136
Issue/Number
1
Publication Date
1-1-2014
Document Type
Article
DOI Link
Language
English
First Page
14
WOS Identifier
ISSN
1087-1357
Recommended Citation
"Evaluation of Ductile Fracture Models in Finite Element Simulation of Metal Cutting Processes" (2014). Faculty Bibliography 2010s. 5707.
https://stars.library.ucf.edu/facultybib2010/5707
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu