Title

Hybrid Manifold Embedding

Authors

Authors

Y. Liu; Y. Liu; K. C. C. Chan;K. A. Hua

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

IEEE Trans. Neural Netw. Learn. Syst.

Keywords

Dimensionality reduction; geodesic clustering (GC); hybrid manifold; embedding (HyME); locally conjugate discriminant projection (LCDP); supervised manifold learning; NONLINEAR DIMENSIONALITY REDUCTION; LINEAR DISCRIMINANT-ANALYSIS; FACE; RECOGNITION; REPRESENTATION; PROJECTION; FRAMEWORK; DATABASE; Computer Science, Artificial Intelligence; Computer Science, Hardware &; Architecture; Computer Science, Theory & Methods; Engineering, ; Electrical & Electronic

Abstract

In this brief, we present a novel supervised manifold learning framework dubbed hybrid manifold embedding (HyME). Unlike most of the existing supervised manifold learning algorithms that give linear explicit mapping functions, the HyME aims to provide a more general nonlinear explicit mapping function by performing a two-layer learning procedure. In the first layer, a new clustering strategy called geodesic clustering is proposed to divide the original data set into several subsets with minimum nonlinearity. In the second layer, a supervised dimensionality reduction scheme called locally conjugate discriminant projection is performed on each subset for maximizing the discriminant information and minimizing the dimension redundancy simultaneously in the reduced low-dimensional space. By integrating these two layers in a unified mapping function, a supervised manifold embedding framework is established to describe both global and local manifold structure as well as to preserve the discriminative ability in the learned subspace. Experiments on various data sets validate the effectiveness of the proposed method.

Journal Title

Ieee Transactions on Neural Networks and Learning Systems

Volume

25

Issue/Number

12

Publication Date

1-1-2014

Document Type

Article

Language

English

First Page

2295

Last Page

2302

WOS Identifier

WOS:000345518900015

ISSN

2162-237X

Share

COinS