Title
Hybrid Manifold Embedding
Abbreviated Journal Title
IEEE Trans. Neural Netw. Learn. Syst.
Keywords
Dimensionality reduction; geodesic clustering (GC); hybrid manifold; embedding (HyME); locally conjugate discriminant projection (LCDP); supervised manifold learning; NONLINEAR DIMENSIONALITY REDUCTION; LINEAR DISCRIMINANT-ANALYSIS; FACE; RECOGNITION; REPRESENTATION; PROJECTION; FRAMEWORK; DATABASE; Computer Science, Artificial Intelligence; Computer Science, Hardware &; Architecture; Computer Science, Theory & Methods; Engineering, ; Electrical & Electronic
Abstract
In this brief, we present a novel supervised manifold learning framework dubbed hybrid manifold embedding (HyME). Unlike most of the existing supervised manifold learning algorithms that give linear explicit mapping functions, the HyME aims to provide a more general nonlinear explicit mapping function by performing a two-layer learning procedure. In the first layer, a new clustering strategy called geodesic clustering is proposed to divide the original data set into several subsets with minimum nonlinearity. In the second layer, a supervised dimensionality reduction scheme called locally conjugate discriminant projection is performed on each subset for maximizing the discriminant information and minimizing the dimension redundancy simultaneously in the reduced low-dimensional space. By integrating these two layers in a unified mapping function, a supervised manifold embedding framework is established to describe both global and local manifold structure as well as to preserve the discriminative ability in the learned subspace. Experiments on various data sets validate the effectiveness of the proposed method.
Journal Title
Ieee Transactions on Neural Networks and Learning Systems
Volume
25
Issue/Number
12
Publication Date
1-1-2014
Document Type
Article
Language
English
First Page
2295
Last Page
2302
WOS Identifier
ISSN
2162-237X
Recommended Citation
"Hybrid Manifold Embedding" (2014). Faculty Bibliography 2010s. 5711.
https://stars.library.ucf.edu/facultybib2010/5711
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu