Title
Several classes of exact solutions to the 1+1 Born-Infeld equation
Abbreviated Journal Title
Commun. Nonlinear Sci. Numer. Simul.
Keywords
Born-Infeld model; Nonlinear electrodynamics; Exact solutions; GRAVITATIONAL INSTANTONS; FIELD-THEORY; DYNAMICS; Mathematics, Applied; Mathematics, Interdisciplinary Applications; Mechanics; Physics, Fluids & Plasmas; Physics, Mathematical
Abstract
We obtain closed-form exact solutions to the 1 + 1 Born-Infeld equation arising in nonlinear electrodynamics. In particular, we obtain general traveling wave solutions of one wave variable, solutions of two wave variables, similarity solutions, multiplicatively separable solutions, and additively separable solutions. Then, putting the Born-Infeld model into correspondence with the minimal surface equation using a Wick rotation, we are able to construct complex helicoid solutions, transformed catenoid solutions, and complex analogues of Scherk's first and second surfaces. Some of the obtained solutions are new, whereas others are generalizations of solutions in the literature. These exact solutions demonstrate the fact that solutions to the Born-Infeld model can exhibit a variety of behaviors. Exploiting the integrability of the Born-Infeld equation, the solutions are constructed elegantly, without the need for complicated analytical algorithms. (C) 2013 Elsevier B.V. All rights reserved.
Journal Title
Communications in Nonlinear Science and Numerical Simulation
Volume
19
Issue/Number
6
Publication Date
1-1-2014
Document Type
Article
Language
English
First Page
1669
Last Page
1674
WOS Identifier
ISSN
1007-5704
Recommended Citation
"Several classes of exact solutions to the 1+1 Born-Infeld equation" (2014). Faculty Bibliography 2010s. 5782.
https://stars.library.ucf.edu/facultybib2010/5782
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu