Title
Numerical Surrogates for Human Observers in Myocardial Motion Evaluation From SPECT Images
Abbreviated Journal Title
IEEE Trans. Med. Imaging
Keywords
Cardiac motion; cardiac-gated single photon emission computed; tomography; image quality; machine learning; model observers; numerical; observer; PERFUSION SPECT; LEFT-VENTRICLE; GATED SPECT; MATHEMATICAL-MODEL; HOTELLING OBSERVER; DETECTION ACCURACY; RECONSTRUCTION; COMPENSATION; OPTIMIZATION; QUANTITATION; Computer Science, Interdisciplinary Applications; Engineering, ; Biomedical; Engineering, Electrical & Electronic; Imaging Science &; Photographic Technology; Radiology, Nuclear Medicine & Medical Imaging
Abstract
In medical imaging, the gold standard for image-quality assessment is a task-based approach in which one evaluates human observer performance for a given diagnostic task (e. g., detection of a myocardial perfusion or motion defect). To facilitate practical task-based image-quality assessment, model observers are needed as approximate surrogates for human observers. In cardiac-gated SPECT imaging, diagnosis relies on evaluation of the myocardial motion as well as perfusion. Model observers for the perfusion-defect detection task have been studied previously, but little effort has been devoted toward development of a model observer for cardiac-motion defect detection. In this work, we describe two model observers for predicting human observer performance in detection of cardiac-motion defects. Both proposed methods rely on motion features extracted using previously reported deformable mesh model for myocardium motion estimation. The first method is based on a Hotelling linear discriminant that is similar in concept to that used commonly for perfusion-defect detection. In the second method, based on relevance vector machines (RVM) for regression, we compute average human observer performance by first directly predicting individual human observer scores, and then using multi reader receiver operating characteristic analysis. Our results suggest that the proposed RVM model observer can predict human observer performance accurately, while the new Hotelling motion-defect detector is somewhat less effective.
Journal Title
Ieee Transactions on Medical Imaging
Volume
33
Issue/Number
1
Publication Date
1-1-2014
Document Type
Article
Language
English
First Page
38
Last Page
47
WOS Identifier
ISSN
0278-0062
Recommended Citation
"Numerical Surrogates for Human Observers in Myocardial Motion Evaluation From SPECT Images" (2014). Faculty Bibliography 2010s. 5796.
https://stars.library.ucf.edu/facultybib2010/5796
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu