Title
Sampling and reconstruction of signals in a reproducing kernel subspace of L-P(R-d)
Abbreviated Journal Title
J. Funct. Anal.
Keywords
Sampling; Iterative reconstruction algorithm; Reproducing kernel spaces; Idempotent operators; p-Frames; SHIFT-INVARIANT SPACES; INTEGRABLE GROUP-REPRESENTATIONS; FINITE RATE; ATOMIC DECOMPOSITIONS; HILBERT-SPACES; NOISY SAMPLES; ITERATIVE; RECONSTRUCTION; L-P; INNOVATION; SHANNON; Mathematics
Abstract
In this paper, we consider sampling and reconstruction of signals in a reproducing kernel subspace of L-p(R-d), 1 < = p < = infinity, associated with an idempotent integral operator whose kernel has certain off-diagonal decay and regularity. The space of p-integrable non-uniform splines and the shift-invariant spaces generated by finitely many localized functions are our model examples of such reproducing kernel subspaces of L-p(R-d). We show that a signal in such reproducing kernel subspaces can be reconstructed in a stable way from its samples taken on a relatively-separated set with sufficiently small gap. We also study the exponential convergence, consistency, and the asymptotic pointwise error estimate of the iterative approximation-projection algorithm and the iterative frame algorithm for reconstructing a signal in those reproducing kernel spaces from its samples with sufficiently small gap. (C) 2009 Elsevier Inc. All rights reserved.
Journal Title
Journal of Functional Analysis
Volume
258
Issue/Number
7
Publication Date
1-1-2010
Document Type
Article
Language
English
First Page
2422
Last Page
2452
WOS Identifier
ISSN
0022-1236
Recommended Citation
"Sampling and reconstruction of signals in a reproducing kernel subspace of L-P(R-d)" (2010). Faculty Bibliography 2010s. 581.
https://stars.library.ucf.edu/facultybib2010/581
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu