Abbreviated Journal Title
Aging Cell
Keywords
adiponectin; adipose tissue; Ames dwarf; insulin; obesity; TUMOR-NECROSIS-FACTOR; ADIPOSE-TISSUE; SURGICAL REMOVAL; RESISTANCE; LONGEVITY; ADIPONECTIN; SENSITIVITY; EXPRESSION; OBESITY; GENE; Cell Biology; Geriatrics & Gerontology
Abstract
Ames dwarf (Prop1df, df/df) mice are characterized by growth hormone (GH), prolactin, and thyrotropin deficiency, remarkable extension of longevity and increased insulin sensitivity with low levels of fasting insulin and glucose. Plasma levels of anti-inflammatory adiponectin are increased in df/df mice, while pro-inflammatory IL-6 is decreased in plasma and epididymal fat. This represents an important shift in the balance between pro- and anti-inflammatory adipokines in adipose tissue, which was not exposed to GH signals during development or adult life. To determine the role of adipose tissue in the control of insulin signaling in these long-living mutants, we examined the effects of surgical removal of visceral (epididymal and perinephric) adipose tissue. Comparison of the results obtained in df/df mice and their normal (N) siblings indicated different effects of visceral fat removal (VFR) on insulin sensitivity and glucose tolerance. The analysis of the expression of genes related to insulin signaling indicated that VFR improved insulin action in skeletal muscle in N mice. Interestingly, this surgical intervention did not improve insulin signaling in df/df mice skeletal muscle but caused suppression of the signal in subcutaneous fat. We conclude that altered profile of adipokines secreted by visceral fat of Ames dwarf mice may act as a key contributor to increased insulin sensitivity and extended longevity of these animals.
Journal Title
Aging Cell
Volume
13
Issue/Number
3
Publication Date
1-1-2014
Document Type
Article
DOI Link
Language
English
First Page
497
Last Page
506
WOS Identifier
ISSN
1474-9718
Recommended Citation
Menon, Vinal; Zhi, Xu; Hossain, Tanvir; Bartke, Andrzej; Spong, Adam; Gesing, Adam; and Masternak, Michal M., "The contribution of visceral fat to improved insulin signaling in Ames dwarf mice" (2014). Faculty Bibliography 2010s. 5831.
https://stars.library.ucf.edu/facultybib2010/5831
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu