Title
Stability of choice in the honey bee nest-site selection process
Abbreviated Journal Title
J. Theor. Biol.
Keywords
Honey bee; Honeybee; Apis mellifera; Swarm; Nest-site selection; Mathematical model; Basic recruitment number; COLLECTIVE DECISION-MAKING; ANT TEMNOTHORAX-ALBIPENNIS; SWARMS; HOME; MODEL; ACCURACY; SCOUTS; SPEED; Biology; Mathematical & Computational Biology
Abstract
We introduce a pair of compartment models for the honey bee nest-site selection process that lend themselves to analytic methods. The first model represents a swarm of bees deciding whether a site is viable, and the second characterizes its ability to select between two viable sites. We find that the one-site assessment process has two equilibrium states: a disinterested equilibrium (DE) in which the bees show no interest in the site and an interested equilibrium (IE) in which bees show interest. In analogy with epidemic models, we define basic and absolute recruitment numbers (R(0) and B(0)) as measures of the swarm's sensitivity to dancing by a single bee. If R(0) is less than one then the DE is locally stable, and if B(0) is less than one then it is globally stable. If R(0) is greater than one then the DE is unstable and the IE is stable under realistic conditions. In addition, there exists a critical site quality threshold Q* above which the site can attract some interest (at equilibrium) and below which it cannot. We also find the existence of a second critical site quality threshold Q** above which the site can attract a quorum (at equilibrium) and below which it cannot. The two-site discrimination process, in which we examine a swarm's ability to simultaneously consider two sites differing in both site quality and discovery time, has a stable DE if and only if both sites' individual basic recruitment numbers are less than one. Numerical experiments are performed to study the influences of site quality on quorum time and the outcome of competition between a lower quality site discovered first and a higher quality site discovered second. (C) 2009 Elsevier Ltd. All rights reserved.
Journal Title
Journal of Theoretical Biology
Volume
263
Issue/Number
1
Publication Date
1-1-2010
Document Type
Article
Language
English
First Page
93
Last Page
107
WOS Identifier
ISSN
0022-5193
Recommended Citation
"Stability of choice in the honey bee nest-site selection process" (2010). Faculty Bibliography 2010s. 590.
https://stars.library.ucf.edu/facultybib2010/590
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu