Title
Many L-Shaped Polyominoes Have Odd Rectangular Packings
Abbreviated Journal Title
Ann. Comb.
Keywords
polyomino; tiling; rectifiable; odd order; CONGRUENT POLYOMINOES; Mathematics, Applied
Abstract
A polyomino is called odd if it can tile a rectangle using an odd number of copies. We give a very general family of odd polyominoes. Specifically, consider an L-shaped polyomino, i.e., a rectangle that has a rectangular piece removed from one corner. For some of these polyominoes, two copies tile a rectangle, called a basic rectangle. We prove that such a polyomino is odd if its basic rectangle has relatively prime side lengths. This general family encompasses several previously known families of odd polyominoes, as well as many individual examples. We prove a stronger result for a narrower family of polyominoes. Let L (n) denote the polyomino formed by removing a 1 x (n-2) corner from a 2 x (n-1) rectangle. We show that when n is odd, L (n) tiles all rectangles both of whose sides are at least 8n (3), and whose area is a multiple of n. If we only allow L (n) to be rotated, but not reflected, then the same is true, provided that both sides of the rectangle are at least 16n (4). We also give several isolated examples of odd polyominoes.
Journal Title
Annals of Combinatorics
Volume
18
Issue/Number
2
Publication Date
1-1-2014
Document Type
Article
Language
English
First Page
341
Last Page
357
WOS Identifier
ISSN
0218-0006
Recommended Citation
"Many L-Shaped Polyominoes Have Odd Rectangular Packings" (2014). Faculty Bibliography 2010s. 5990.
https://stars.library.ucf.edu/facultybib2010/5990
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu