Title

Plasmonic Coupling in Single Silver Nanosphere Assemblies by Polarization-Dependent Dark-Field Scattering Spectroscopy

Authors

Authors

X. D. Tian; Y. D. Zhou; S. Thota; S. L. Zou;J. Zhao

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

J. Phys. Chem. C

Keywords

INFRARED-ABSORPTION SPECTROSCOPY; ENHANCED RAMAN-SPECTROSCOPY; NANOPARTICLE CLUSTERS; METAL NANOPARTICLES; SURFACE; NANOSTRUCTURES; SYMMETRY; ENVIRONMENT; MOLECULES; CIRCUITRY; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, ; Multidisciplinary

Abstract

In this paper, we present an experimental and theoretical study of the plasmonic properties of single Ag nanospheres and the plasmon interactions in assemblies of Ag nanosphere dimers and trimers. High-quality Ag nanospheres with small size distribution are synthesized by etching prefabricated Ag nanocubes. We perform a 360 polarization-resolved scattering study on silver nanosphere dimers and trimers, and correlate the scattering anisotropy with nanoparticle structure through correlated dark-field spectroscopy and scanning electron microscopy (SEM) characterization. The polarization-resolved dimer scattering shows a dipolar pattern aligned with the long axis of the dimer. For single Ag nanosphere trimers assembled in an equilateral triangle geometry, we also observe the dipolar scattering pattern to a certain degree, although the dipolar pattern is not preferentially aligned with any sides of the triangle. Theoretical studies using the T-matrix method reveal that if the Ag nanospheres are perfectly spherical and are assembled in a trimer with D-3h symmetry, the scattering spectra should be polarization independent, in contrast to the observed experimental results. The same phenomena are demonstrated in Ag nanopshere assemblies in D-4h D-5h and D-6h, symmetry as well. Using the discrete dipole approximation method, we find that slight elongation (5%) in one of the three axes of the Ag nanospheres can induce a significant anisotropy in the scattering pattern. We here have shown that even small variations in the nanoparticle geometry that are difficult to resolve with SEM can lead to significant effects in the plasmonic coupling, therefore affecting the scattering spectra of the assembled nanostructures.

Journal Title

Journal of Physical Chemistry C

Volume

118

Issue/Number

25

Publication Date

1-1-2014

Document Type

Article

Language

English

First Page

13801

Last Page

13808

WOS Identifier

WOS:000338184300056

ISSN

1932-7447

Share

COinS