Title
A Unified Formulation of Gaussian Versus Sparse Stochastic Processes-Part I: Continuous-Domain Theory
Abbreviated Journal Title
IEEE Trans. Inf. Theory
Keywords
Sparsity; non-Gaussian stochastic processes; innovation modeling; continuous-time signals; stochastic differential equations; wavelet; expansion; Levy process; infinite divisibility; LINEAR INVERSE PROBLEMS; THRESHOLDING ALGORITHM; SIGNALS; TRANSFORM; ANALOG; Computer Science, Information Systems; Engineering, Electrical &; Electronic
Abstract
We introduce a general distributional framework that results in a unifying description and characterization of a rich variety of continuous-time stochastic processes. The cornerstone of our approach is an innovation model that is driven by some generalized white noise process, which may be Gaussian or not (e.g., Laplace, impulsive Poisson, or alpha stable). This allows for a conceptual decoupling between the correlation properties of the process, which are imposed by the whitening operator L, and its sparsity pattern, which is determined by the type of noise excitation. The latter is fully specified by a Levy measure. We show that the range of admissible innovation behavior varies between the purely Gaussian and super-sparse extremes. We prove that the corresponding generalized stochastic processes are well-defined mathematically provided that the (adjoint) inverse of the whitening operator satisfies some L p bound for p > = 1. We present a novel operator-based method that yields an explicit characterization of all Levy-driven processes that are solutions of constant-coefficient stochastic differential equations. When the underlying system is stable, we recover the family of stationary continuous-time autoregressive moving average processes (CARMA), including the Gaussian ones. The approach remains valid when the system is unstable and leads to the identification of potentially useful generalizations of the Levy processes, which are sparse and non-stationary. Finally, we show that these processes admit a sparse representation in some matched wavelet domain and provide a full characterization of their transform-domain statistics.
Journal Title
Ieee Transactions on Information Theory
Volume
60
Issue/Number
3
Publication Date
1-1-2014
Document Type
Article
Language
English
First Page
1945
Last Page
1962
WOS Identifier
ISSN
0018-9448
Recommended Citation
"A Unified Formulation of Gaussian Versus Sparse Stochastic Processes-Part I: Continuous-Domain Theory" (2014). Faculty Bibliography 2010s. 6202.
https://stars.library.ucf.edu/facultybib2010/6202
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu