Title

Comparison between geometrically focused pulses versus filaments in femtosecond laser ablation of steel and titanium alloys

Authors

Authors

A. Valenzuela; C. Munson; A. Porwitzky; M. Weidman;M. Richardson

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

Appl. Phys. B-Lasers Opt.

Keywords

INDUCED BREAKDOWN SPECTROSCOPY; MULTIPLE FILAMENTATION; TRANSPARENT; MEDIA; AIR; LIBS; PROPAGATION; LIGHT; POWER; TI; Optics; Physics, Applied

Abstract

Kerr self-focusing of high-power ultrashort laser pulses in atmosphere may result in a structure or structures of high intensity that can propagate over long distances with little divergence. Filamentation has garnered significant interest in the nonlinear optics community due to its unique properties. Salient features of filaments include a central region of intense laser power (greater than the ionization threshold of the propagation medium) and a low temperature plasma column that lasts up to nanoseconds in duration after the passage of the laser pulse. Steel and titanium samples are ablated by filaments and by sharply focused sub-picosecond laser pulses. We then performed metrology on the samples to compare the ablation features in addition to modeling of the plasma ablation process. Ablation with filaments leads to a wider range of material responses as compared to ablation with sharply focused pulse. This results in potential complications for applications of filament ablation that depends on the rate of material removal and spectroscopic analysis.

Journal Title

Applied Physics B-Lasers and Optics

Volume

116

Issue/Number

2

Publication Date

1-1-2014

Document Type

Article

Language

English

First Page

485

Last Page

491

WOS Identifier

WOS:000339727000027

ISSN

0946-2171

Share

COinS