Authors

D. B. Wang;Y. Tang

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

Geophys. Res. Lett.

Keywords

MEAN ANNUAL EVAPOTRANSPIRATION; CLIMATE; CALIBRATION; RUNOFF; SCALE; Geosciences, Multidisciplinary

Abstract

Hydrologic models can be categorized as being either Newtonian or Darwinian in nature. The Newtonian approach requires a thorough understanding of the individual physical processes acting in a watershed in order to build a detailed hydrologic model based on the conservation equations. The Darwinian approach seeks to explain the behavior of a hydrologic system as a whole by identifying simple and robust temporal or spatial patterns that capture the relevant processes. Darwinian-based hydrologic models include the Soil Conservation Service (SCS) curve number model, the "abcd" model, and the Budyko-type models. However, these models were developed based on widely differing principles and assumptions and applied to distinct time scales. Here, we derive a one-parameter Budyko-type model for mean annual water balance which is based on a generalization of the proportionality hypothesis of the SCS model and therefore is independent of temporal scale. Furthermore, we show that the new model is equivalent to the key equation of the "abcd" model. Theoretical lower and upper bounds of the new model are identified and validated based on previous observations. Thus, we illustrate a temporal pattern of water balance amongst Darwinian hydrologic models, which allows for synthesis with the Newtonian approach and offers opportunities for progress in hydrologic modeling.

Journal Title

Geophysical Research Letters

Volume

41

Issue/Number

13

Publication Date

1-1-2014

Document Type

Article

Language

English

First Page

4569

Last Page

4577

WOS Identifier

WOS:000340295300022

ISSN

0094-8276

Share

COinS