Title
Statistical power of the social network autocorrelation model
Abbreviated Journal Title
Soc. Networks
Keywords
Network autocorrelation model; Social network analysis; Statistical; power; AUTO-CORRELATION; AUTOREGRESSIVE MODELS; DEPENDENCY TESTS; ESTIMATION; BIAS; PSYCHOLOGY; TOPOLOGY; DYNAMICS; BEHAVIOR; DENSITY; Anthropology; Sociology
Abstract
The network autocorrelation model has become an increasingly popular tool for conducting social network analysis. More and more researchers, however, have documented evidence of a systematic negative bias in the estimation of the network effect (rho). In this paper, we take a different approach to the problem by investigating conditions under which, despite the underestimation bias, a network effect can still be detected by the network autocorrelation model. Using simulations, we find that moderately-sized network effects (e.g., rho=.3) are still often detectable in modest-sized networks (i.e., 40 or more nodes). Analyses reveal that statistical power is primarily a nonlinear function of network effect size (rho) and network size (N), although both of these factors can interact with network density and network structure to impair power under certain rare conditions. We conclude by discussing implications of these findings and guidelines for users of the autocorrelation model. (C) 2014 Elsevier B.V. All rights reserved.
Journal Title
Social Networks
Volume
38
Publication Date
1-1-2014
Document Type
Article
Language
English
First Page
88
Last Page
99
WOS Identifier
ISSN
0378-8733
Recommended Citation
"Statistical power of the social network autocorrelation model" (2014). Faculty Bibliography 2010s. 6248.
https://stars.library.ucf.edu/facultybib2010/6248
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu