Title

Statistical power of the social network autocorrelation model

Authors

Authors

W. Wang; E. J. Neuman;D. A. Newman

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

Soc. Networks

Keywords

Network autocorrelation model; Social network analysis; Statistical; power; AUTO-CORRELATION; AUTOREGRESSIVE MODELS; DEPENDENCY TESTS; ESTIMATION; BIAS; PSYCHOLOGY; TOPOLOGY; DYNAMICS; BEHAVIOR; DENSITY; Anthropology; Sociology

Abstract

The network autocorrelation model has become an increasingly popular tool for conducting social network analysis. More and more researchers, however, have documented evidence of a systematic negative bias in the estimation of the network effect (rho). In this paper, we take a different approach to the problem by investigating conditions under which, despite the underestimation bias, a network effect can still be detected by the network autocorrelation model. Using simulations, we find that moderately-sized network effects (e.g., rho=.3) are still often detectable in modest-sized networks (i.e., 40 or more nodes). Analyses reveal that statistical power is primarily a nonlinear function of network effect size (rho) and network size (N), although both of these factors can interact with network density and network structure to impair power under certain rare conditions. We conclude by discussing implications of these findings and guidelines for users of the autocorrelation model. (C) 2014 Elsevier B.V. All rights reserved.

Journal Title

Social Networks

Volume

38

Publication Date

1-1-2014

Document Type

Article

Language

English

First Page

88

Last Page

99

WOS Identifier

WOS:000337015400008

ISSN

0378-8733

Share

COinS