Abbreviated Journal Title
SIAM J. Math. Anal.
Keywords
limited data; computerized tomography; spectrum; asymptotic analysis; Hilbert transform; ill-posedness; CONE-BEAM CT; IMAGE-RECONSTRUCTION; FAN-BEAM; BACKPROJECTION; Mathematics, Applied
Abstract
The truncated Hilbert transform with overlap H-T is an operator that arises in tomographic reconstruction from limited data, more precisely in the method of differentiated back-projection. Recent work [R. Al-Aifari and A. Katsevich, SIAM J. Math. Anal., 46 (2014), pp. 192213] has shown that the singular values of this operator accumulate at both zero and one. To better understand the properties of the operator and, in particular, the ill-posedness of the inverse problem associated with it, it is of interest to know the rates at which the singular values approach zero and one. In this paper, we exploit the property that H-T commutes with a second-order differential operator L-S and the global asymptotic behavior of its eigenfunctions to find the asymptotics of the singular values and singular functions of H-T.
Journal Title
Siam Journal on Mathematical Analysis
Volume
47
Issue/Number
1
Publication Date
1-1-2015
Document Type
Article
DOI Link
Language
English
First Page
797
Last Page
824
WOS Identifier
ISSN
0036-1410
Recommended Citation
Al-Aifari, Reema; Defrise, Michel; and Katsevich, Alexander, "Asymptotic Analysis of The SVD For The Truncated Hilbert Transform With Overlap" (2015). Faculty Bibliography 2010s. 6385.
https://stars.library.ucf.edu/facultybib2010/6385
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu