Title
Frequency-dependent conductive behavior of polymer-derived amorphous silicon carbonitride
Abbreviated Journal Title
Acta Mater.
Keywords
Frequency-dependent conduction; Polymer-derived ceramics; Amorphous; SiCN; Free carbon; PYROLYSIS TEMPERATURE; ELECTRICAL-PROPERTIES; SIALCN CERAMICS; PIEZORESISTIVITY; TRANSPORT; OXIDATION; Materials Science, Multidisciplinary; Metallurgy & Metallurgical; Engineering
Abstract
The AC conductive behavior of a polymer-derived amorphous silicon carbonitride ceramic was systemically studied. The conductivity exhibited a frequency-dependent switch: at low frequencies, the conductivity is constant and independent of frequency; while at high frequencies, the conductivity increases with frequency, showing a strong relaxation process. Both the frequency-independent conductivity and the characteristic frequency for the relaxation follow the Arrhenius relation with respect to the annealing temperature and follow a band-tail hopping process with respect to the testing temperature. XPS analysis revealed that a sp(3)-sp(2) transition took place in the free-carbon phase of the material with increasing annealing temperature. The activation energy of the transition is similar to those for the Arrhenius relations. The following conductive mechanisms were proposed to account for the observed behaviors: the frequency-independent conductivity in the low frequency region is dominated by a long-distance transport of charge carriers via matrix-free carbon path, enhanced by an electric-field concentration effect; while the frequency-dependent conductivity in the high frequency region is dominated by a interfacial polarization process governed by charge carrier relaxation within the free-carbon phase. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Journal Title
Acta Materialia
Volume
89
Publication Date
1-1-2015
Document Type
Article
Language
English
First Page
215
Last Page
224
WOS Identifier
ISSN
1359-6454
Recommended Citation
"Frequency-dependent conductive behavior of polymer-derived amorphous silicon carbonitride" (2015). Faculty Bibliography 2010s. 6679.
https://stars.library.ucf.edu/facultybib2010/6679
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu