Authors

M. A. Ortigozaa;S. Stolbov

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

J. Chem. Phys.

Keywords

OXYGEN-ADSORPTION; SHELL NANOPARTICLES; TRANSITION-METALS; SURFACE; ELECTROCATALYSTS; OXIDATION; PT(111); SPECTROSCOPY; CHEMISTRY; PLATINUM; Physics, Atomic, Molecular & Chemical

Abstract

The nobleness of gold surfaces has been appreciated since long before the beginning of recorded history. Yet, the origin of this phenomenon remains open because the so far existing explanations either incorrectly imply that silver should be the noblest metal or would fail to predict the dissolution of Au in aqua regia. Here, based on our analyses of oxygen adsorption, we advance that bulk gold's unique resistance to oxidation is traced to the large energy cost associated with the perturbation its surfaces undergo upon adsorption of highly electronegative species. This fact is related to the almost totally filled d-band of Au and relativistic effects, but does not imply that the strength of the adsorbate-Au bond is weak. The magnitude of the structural and charge-density perturbation energy upon adsorption of atomic oxygen-which is largest for Au-is assessed from first-principles calculations and confirmed via a multiple regression analysis of the binding energy of oxygen on metal surfaces.

Journal Title

Journal of Chemical Physics

Volume

142

Issue/Number

19

Publication Date

1-1-2015

Document Type

Article

Language

English

First Page

12

WOS Identifier

WOS:000355006200034

ISSN

0021-9606

Share

COinS