Title
Stable reconstruction of regular 1-Harmonic maps with a given trace at the boundary
Abbreviated Journal Title
Appl. Anal.
Keywords
35R30; 31A25; 35J60; characteristics; boundary value problems; global; convergence; 1-Laplacian; current density impedance imaging; PARTIAL-DIFFERENTIAL-EQUATIONS; MAGNETIC-RESONANCE; CURRENT-DENSITY; Mathematics, Applied
Abstract
We consider the numerical solvability of the Dirichlet problem for the 1-Laplacian in a planar domain endowed with a metric conformal with the Euclidean one. Provided that a regular solution exists, we present a globally convergent method to find it. The global convergence allows to show a local stability in the Dirichlet problem for the 1-Laplacian nearby regular solutions. Such problems occur in conductivity imaging, when knowledge of the magnitude of the current density field (generated by an imposed boundary voltage) is available inside. Numerical experiments illustrate the feasibility of the convergent algorithm in the context of the conductivity imaging problem.
Journal Title
Applicable Analysis
Volume
94
Issue/Number
6
Publication Date
1-1-2015
Document Type
Article
Language
English
First Page
1098
Last Page
1115
WOS Identifier
ISSN
0003-6811
Recommended Citation
"Stable reconstruction of regular 1-Harmonic maps with a given trace at the boundary" (2015). Faculty Bibliography 2010s. 6821.
https://stars.library.ucf.edu/facultybib2010/6821
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu