Title
Combining an optical resonance biosensor with enzyme activity kinetics to understand protein adsorption and denaturation
Abbreviated Journal Title
Biomaterials
Keywords
Biosensor; Modeling; Protein adsorption; Surface modification; Nanobiotechnology; Self-assembled monolayer; QUARTZ-CRYSTAL MICROBALANCE; INDUCED CONFORMATIONAL-CHANGES; WHISPERING-GALLERY MODES; HIGH-Q MICROCAVITIES; GLUCOSE-OXIDASE; ASPERGILLUS-NIGER; SOLID-SURFACES; THIN-FILMS; SHIFT; MICROSPHERES; Engineering, Biomedical; Materials Science, Biomaterials
Abstract
Understanding protein adsorption and resultant conformation changes on modified and unmodified silicon dioxide surfaces is a subject of keen interest in biosensors, microfluidic systems and for medical diagnostics. However, it has been proven difficult to investigate the kinetics of the adsorption process on these surfaces as well as understand the topic of the denaturation of proteins and its effect on enzyme activity. A highly sensitive optical whispering gallery mode (WGM) resonator was used to study a catalytic enzyme's adsorption processes on different silane modified glass substrates (plain glass control, DETA, 13F, and SiPEG). The WGM sensor was able to obtain high resolution kinetic data of glucose oxidase (GO) adsorption with sensitivity of adsorption better than that possible with SPR. The kinetic data, in combination with a functional assay of the enzyme activity, was used to test hypotheses on adsorption mechanisms. By fitting numerical models to the WGM sensograms for protein adsorption, and by confirming numerical predictions of enzyme activity in a separate assay, we were able to identify mechanisms for GO adsorption on different alkylsilanes and infer information about the adsorption of protein on nanostructured surfaces. (C) 2014 Elsevier Ltd. All rights reserved.
Journal Title
Biomaterials
Volume
38
Publication Date
1-1-2015
Document Type
Article
Language
English
First Page
86
Last Page
96
WOS Identifier
ISSN
0142-9612
Recommended Citation
"Combining an optical resonance biosensor with enzyme activity kinetics to understand protein adsorption and denaturation" (2015). Faculty Bibliography 2010s. 6871.
https://stars.library.ucf.edu/facultybib2010/6871
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu