Title
A Resistivity Model for Ultrathin Films and Sensors
Abbreviated Journal Title
IEEE Sens. J.
Keywords
Conductivity; gold thin films; modeling; palladium thin films; thin film; modeling; thin films; thin film hydrogen sensors; thin film sensors; titanium thin films; ultra-thin films; DISCONTINUOUS PALLADIUM FILMS; ELECTRICAL-CONDUCTION; METAL-FILMS; POLYCRYSTALLINE FILMS; HYDROGEN ABSORPTION; RESISTANCE; Engineering, Electrical & Electronic; Instruments & Instrumentation; Physics, Applied
Abstract
Gas sensors have been demonstrated based on the conductivity changes in ultrathin films. These sensors operate in a regime where three different physical phenomena determine the total resistivity of the film; quantum mechanical coupling between metallic islands, bulk material conductivity of the islands, and network resistivity. We present a lumped parameter model that simulates thin-film growth and calculates the total film resistance during the growth process accounting for these three phenomena. The model contains four free parameters and yields a good agreement with experimental data presented for palladium, titanium, and gold. The primary benefit of this model is that it shows the relative contribution of each source of conductivity during the growth process providing insight into the operation of ultrathin films as gas sensors. We then model an ultrathin-film palladium-based hydrogen sensor and show that the sensing mechanism is primarily due to variations in quantum tunneling.
Journal Title
Ieee Sensors Journal
Volume
15
Issue/Number
4
Publication Date
1-1-2015
Document Type
Article
Language
English
First Page
2412
Last Page
2418
WOS Identifier
ISSN
1530-437X
Recommended Citation
"A Resistivity Model for Ultrathin Films and Sensors" (2015). Faculty Bibliography 2010s. 6901.
https://stars.library.ucf.edu/facultybib2010/6901
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu