Title
Analytical and numerical results for the Swift-Hohenberg equation
Abbreviated Journal Title
Appl. Math. Comput.
Keywords
Swift-Hohenberg equation; Fisher-Kolmogorov equation; Higher order; parabolic model equations; Series solution; Convergent solution; PROPAGATING FRONTS; STRETCHING PLATE; FLOWS; FLUID; Mathematics, Applied
Abstract
The problem of the Swift-Hohenberg equation is considered in this paper. Using homotopy analysis method (HAM) the series solution is developed and its convergence is discussed and documented here for the first time. In particular, we focus on the roles of the eigenvalue parameter alpha and the length parameter l on the large time behaviour of the solution. For a given time t, we obtain analytical expressions for eigenvalue parameter alpha and length l which show how different values of these parameters may lead to qualitatively different large time profiles. Also, the results are presented graphically. The results obtained reveal many interesting behaviors that warrant further study of the equations related to non-Newtonian fluid phenomena, especially the shear-thinning phenomena. Shear thinning reduces the wall shear stress. (C) 2010 Elsevier Inc. All rights reserved.
Journal Title
Applied Mathematics and Computation
Volume
216
Issue/Number
1
Publication Date
1-1-2010
Document Type
Article
Language
English
First Page
221
Last Page
226
WOS Identifier
ISSN
0096-3003
Recommended Citation
"Analytical and numerical results for the Swift-Hohenberg equation" (2010). Faculty Bibliography 2010s. 6937.
https://stars.library.ucf.edu/facultybib2010/6937
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu