Abbreviated Journal Title
Remote Sens.
Keywords
lidar; classification algorithms; support vector machines; oak scrub; Florida; time since fire; prescribed burning; disturbance ecology; Remote Sensing
Abstract
Disturbance plays a fundamental role in determining the vertical structure of vegetation in many terrestrial ecosystems, and knowledge of disturbance histories is vital for developing effective management and restoration plans. In this study, we investigated the potential of using vertical vegetation profiles derived from discrete-return lidar to predict time since fire (TSF) in a landscape of oak scrub in east-central Florida. We predicted that fire influences vegetation structure at the mesoscale (i.e., spatial scales of tens of meters to kilometers). To evaluate this prediction, we binned lidar returns into 1m vertical by 5 x 5 m horizontal cells and averaged the resulting profiles over a range of horizontal window sizes (0 to 500 m on a side). We then performed a series of resampling tests to compare the performance of support vector machine (SVM), k-nearest neighbor (k-NN), logistic regression, and linear discriminant analysis (LDA) classifiers and to estimate the amount of training data necessary to achieve satisfactory performance. Our results indicate that: (1) the SVMs perform significantly better than the other classifiers, (2) SVM classifiers may require relatively small training data sets, and (3) the highest classification accuracies occur with averaging over windows representing sizes in the mesoscale range.
Journal Title
Remote Sensing
Volume
2
Issue/Number
2
Publication Date
1-1-2010
Document Type
Article
DOI Link
Language
English
First Page
514
Last Page
525
WOS Identifier
ISSN
2072-4292
Recommended Citation
Angelo, James J.; Duncan, Brean W.; and Weishampel, John F., "Using Lidar-Derived Vegetation Profiles to Predict Time since Fire in an Oak Scrub Landscape in East-Central Florida" (2010). Faculty Bibliography 2010s. 6954.
https://stars.library.ucf.edu/facultybib2010/6954
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu