Title

A Method for Subsample Fetal Heart Rate Estimation Under Noisy Conditions

Authors

Authors

I. Sahin; N. Yilmazer;M. A. Simaan

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

IEEE Trans. Biomed. Eng.

Keywords

Discrete Fourier transform (DFT); fetal ECG; fundamental period; estimation; heart rate estimation; phase shift operator; FREQUENCY-DOMAIN; ECG EXTRACTION; DETECTION ALGORITHMS; SIGNALS; TIME; VARIABILITY; RECORDINGS; ALIGNMENT; Engineering, Biomedical

Abstract

In this paper, we consider a new approach for estimating the fundamental period in fetal ECG waveforms. The fundamental period contains information that is indicative of the physiological condition of the fetus such as hypoxia and acidemia. Our method is based on the minimization of a cost function that measures the differences between the discrete Fourier transform (DFT) of the fetal ECG waveform and the DFTs of its circularly shifted forms. By using the linear phase shift property of the DFT, we show that the minimization of this cost function is equivalent to finding the cosine waveform that matches best to the ECG power spectrum. The optimal cosine waveform is then used to estimate the fundamental period. We expand this method and discuss estimation of the fundamental period with subsample precision. Subsample estimates may be useful especially when a low sampling rate is used for a long period of monitoring. Comparison of performance of this method with Cepstrum and average magnitude difference function methods shows that our approach achieves very accurate period estimation results for both simulated and real fetal EGC waveforms that are taken at different stages of the gestation under noisy conditions.

Journal Title

Ieee Transactions on Biomedical Engineering

Volume

57

Issue/Number

4

Publication Date

1-1-2010

Document Type

Article

Language

English

First Page

875

Last Page

883

WOS Identifier

WOS:000275998200012

ISSN

0018-9294

Share

COinS